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Abstract

Thin film micromagnetics are a broad class of materials with many technological applications, primarily in magnetic mem-
ory. The dynamics of the magnetization distribution in these materials is traditionally modeled by the Landau–Lifshitz–
Gilbert (LLG) equation. Numerical simulations of the LLG equation are complicated by the need to compute the stray field
due to the inhomogeneities in the magnetization which presents the chief bottleneck for the simulation speed. Here, we intro-
duce a new method for computing the stray field in a sample for a reduced model of ultra-thin film micromagnetics. The
method uses a recently proposed idea of optimal finite difference grids for approximating Neumann-to-Dirichlet maps and
has an advantage of being able to use non-uniform discretization in the film plane, as well as an efficient way of dealing with
the boundary conditions at infinity for the stray field. We present several examples of the method’s implementation and give a
detailed comparison of its performance for studying domain wall structures compared to the conventional FFT-based
methods.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Domain structures determine many properties of real magnetic materials and memory systems, and are a
ubiquitous manifestation of micromagnetism [1–3]. Of particular interest are these structures in thin magnetic
metal films [4–8] which have been intensely investigated during the last two decades, primarily because of their
giant magnetoresistance [9–13]. They also play an important role in multilayer magnetic-normal metal struc-
tures for current-induced reversal of magnetization in a magnetic layer under the action of spin-polarized
current [14–16].

The starting point in the study of micromagnetics is the Landau–Lifshitz–Gilbert (LLG) equation, which
describes the dynamics of the magnetization vector M = (M1, M2, M3) of fixed magnitude |M| = Ms in the
material, with Neumann boundary condition [1]:
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Here, M = M(r, t), with r ¼ ðx; y; zÞ 2 X � R3, where X is the domain occupied by the material; c = g|e|/(2mc) is
the gyromagnetic ratio (we are using the CGS units here), and a is a dimensionless parameter. The first term in
(1) governs the precession of the magnetization vector in the presence of the effective magnetic field Heff, and the
second term introduces phenomenological damping. The effective field Heff is determined self-consistently as
Heff ¼ �
dE
dM

; ð2Þ
where the energy functional E[M] is given by
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This energy consists of the anisotropy (first term), exchange (second term), external field (third term), and the
magnetostatic (fourth term) contributions, with K and A being the respective material constants, and H the
applied field. Note that we assumed the material to be uniaxial, with the x2-axis as the direction of the easy
axis. Also note that the last term in (3) should be understood in the distributional sense by extending M to
M = 0 outside of X to take into account surface ‘‘charges’’ on oX.

It has long been realized that the LLG equation is a paradigm for multiscale modeling (for a review, see
[17]). Even the study of equilibrium properties of magnetic materials require dealing with an intricate energy
landscape associated with issues of non-locality, non-convexity, and the hard constraint |M| = const., apart
from the need to consider, in general, complex three-dimensional geometries. For the time-dependent
problem, a further complication arises from the general need to resolve fast wave-like dynamics due to spin
precession (magnons) and the slow dissipative time scales.

Therefore, direct numerical simulations of (1)–(3) would certainly be impractical without giving special con-
sideration to the type of material, geometry, and experimental protocol involved in a particular setting. These
considerations can also guide the introduction of various approximations which can make the obtained reduced
models more amenable to computational studies [18–20]. Specifically, one important class of problems in mod-
eling magnetic materials has to do with thin film uniaxial ferromagnets with the easy axis in the film plane.
These materials have been the subject of intense analytical and computational studies in recent years (see,
e.g., [21–29]). Recently, efficient numerical approaches for dealing with the constraint |M| = const., using
unconditionally stable time-stepping procedure were developed [30]. Still, the main bottleneck in the numerical
solution of (1) is the calculation of the magnetostatic contribution to the effective field (the ‘‘stray field’’).

One approach to stray field computation in the context of thin film micromagnetics has traditionally been
to use fast Fourier transform (FFT) to evaluate the discrete versions of the integrals with the Newtonian
potential giving rise to the last term in (3) [25]. In such an approach the evaluation of the stray field is quite
efficient. The price to pay, however, is that the computational domain must be discretized on a uniform rect-
angular lattice. Apart from the need to account for boundary effects [28], this approach has limitations in deal-
ing with disparate length scales that are inherent in thin film micromagnetics problems. Alternatively, one
could compute the stray field by discretizing the equation of magnetostatics in the whole of R3. However, this
approach has the need for the boundary condition at the boundary of three-dimensional computational
domain, a common difficulty for the numerical studies of exterior problems [31].

The purpose of this paper is to develop an alternative approach to evaluating the stray field in thin film mic-
romagnetics problems, which possesses both the efficiency of the FFT techniques and can deal with non-uniform
grids. In contrast to previous studies, we are going to use a recently proposed idea of optimal finite difference grids
for approximating Neumann-to-Dirichlet maps arising from the solutions of elliptic boundary value problems
[32–34]. Thin film micromagnetics problems are ideally suited for that, as the stray field is directly related to
the Neumann-to-Dirichlet operator for the Laplace’s equation in half-space. We will demonstrate the efficiency
of these methods by studying domain wall structures in one- and two-dimensional ferromagnetic films in a
reduced model of thin film micromagnetics that is applicable to a wide range of materials [19].

Our paper is organized as follows. In Section 2, we introduce a reduced model that is appropriate for soft
ultra-thin film micromagnetics with in-plane easy axis. In Section 3, we review the main ideas of the optimal
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grid method and give details of our way of optimal grid construction. In Section 4, we present the results of
our numerical analysis for various one- and two-dimensional magnetic domain structures and compare them
with the results obtained by conventional methods. Finally, we summarize in Section 5.

2. Reduced model for thin film micromagnetics

First let us introduce a simplified version of the LLG equation in the case of ultra-thin film micromagnetics,
which will be easier and more transparent for our treatment of the magnetostatic energy and eliminates the
need to deal with other unrelated numerical issues associated with the LLG equation. Our approach here is
very similar to the reduction introduced by Garcia-Cervera and E [19].

Assume that X = D · [0, d], with d small (we will later specify what that means), that is, X is a thin layer
with the base D � R2. Introducing
m ¼ M

Ms
; h ¼ MsH

K
; ð4Þ
so that |m| = 1 in X, and rescaling
r! r

ffiffiffiffi
A
K

r
; t! t

2mcMs

gjejK ; ð5Þ
we write (1) to the leading order in d as
om

ot
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where now r 2 D � R2, and we introduced two dimensionless parameters:
Q ¼ K

4pM2
s

; m ¼ 4pM2
s dffiffiffiffiffiffiffi

AK
p . ð8Þ
The first parameter, Q, is the quality factor that measures the relative strength of the magnetostatic and anisot-
ropy energies in the bulk material, this is typically a small parameter ranging from Q . 0.1 for materials like
cobalt alloys, to Q . 2.5 · 10�4 for very soft magnetic materials like permalloy [1,35]. The second parameter,
m, measures the relative strength of the magnetostatics in thin film, it can be both small and large depending on
the material and the film thickness.

It is easier to understand the meaning of the approximation introduced in terms of the two lengths: the
exchange length l ¼ ðA=4pM2

s Þ
1=2 and the Bloch wall thickness L = (A/K)1/2, then Q = (l/L)2. For example, in

cobalt alloys l . 5 nm, and for a material with Q = 0.1 we will have L . 15 nm. The thin film approximation
is justified, if the thickness of the film does not exceed the exchange length: d [ l (more precisely, when d [ 7l

in the context of Neel walls) [1,35,27]. On the other hand, in terms of l and L we have m = Ld/l2, and so for an
ultra-thin cobalt alloy film above with d = 2 nm we get m . 1. Alternatively, in permalloy with Q = 2.5 · 10�4

we have l . 5 nm and L . 316 nm [29], and so for a film of d = 20 nm thickness we get m . 250.
We now make a crucial observation that the last term in (7) is a gradient of potential u which is essentially

the Neumann-to-Dirichlet map associated with the Laplace’s equation in the half-space applied to the mag-
netic charge density �$ Æ m (see Section 3.1):
u ¼ � 1

2
ð�DÞ�1=2r �m; ð�DÞ�1=2vðrÞ ¼ 1

2p

Z
R2

vðr0Þ
jr� r0j d

2r0. ð9Þ
Thus, obtaining the contribution of the magnetostatic energy to the effective field heff reduces to accurately
evaluating this Neumann-to-Dirichlet map. This will be the main point of our computational approach below.

In the following, we are going to consider the situation in which Q� 1 and h = (0, h, 0), which is relevant to
the problem of magnetic switching, while assuming that both anisotropy, exchange, and the magnetostatics
remain significant. This essentially implies that we consider the limit Q! 0 and m = O(1), which can be achieved
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by passing to the limit K! 0 and d = O(K2) in the LLG equation. This then allows a further simplification of
(6), since for Q� 1 the out-of-plane magnetization component m3 is strongly penalized. Assuming that
m . (m1, m2,0) and retracing the arguments of [19], we then find that the first two components ~m ¼ ðm1;m2Þ
of the magnetization vector m solve (see also [23])
o~m

ot
¼ � aþ 1

a

� �
~m� ~m� ~heff ; ð10Þ
where ~heff is the in-plane component of heff. Interestingly, the obtained effective equation is the overdamped
version of the original LLG equation, with the Gilbert constant a replaced by a + a�1. Since in most materials
a� 1, this has an effect of effectively increasing the rate of dissipation by a large factor and eliminates the need
to track spin precession [19,23]. The consistency criterion for the validity of this equation is Q� a, which is
satisfied in soft materials, since typically a 	 0.01 [1].

This equation can be conveniently written in terms of the angle h between ~m and the easy axis. Setting
~m ¼ ð� sin h; cos hÞ, we obtain
oh
ot
¼ Dh� 1

2
sin 2h� h sin hþ m cos h

ou
ox
þ m sin h

ou
oy
; ð11Þ

u ¼ 1

2
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oh
ox
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oh
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� �
þ surface terms, ð12Þ
where we absorbed the factor of a + a�1 into the definition of time.

3. Optimal grid-based discretization

Our approach to the problem of evaluating the magnetostatic potential u uses the recently proposed con-
cept of optimal grids for accurate approximation of the Neumann-to-Dirichlet operator for elliptic boundary
value problems [32–34]. We will first recall the basic ideas of the optimal grid method and then apply it to the
problem of thin film micromagnetics.

3.1. Neumann-to-Dirichlet map for the Laplace’s equation in half-space

Let us briefly recall the definition of the Neumann-to-Dirichlet operator N for the Laplace’s equation in R3

with the boundary data prescribed on the plane z = 0. Let u solve
Duþ o
2u

oz2
¼ 0; z > 0; ð13Þ
where D = o2/ox2 + o2/oy2 is the Laplacian in the plane, as in (12), with either Dirichlet
uðx; y; 0Þ ¼ uðx; yÞ ð14Þ
or Neumann boundary conditions
lim
z!0þ

ouðx; y; zÞ
oz

¼ �vðx; yÞ. ð15Þ
For appropriately chosen boundary data u or v this boundary value problem has a unique solution. Further-
more, there is a one-to-one correspondence between v and u via the Neumann-to-Dirichlet operator [36]
u ¼Nv. ð16Þ
For the considered problem, it can be computed in closed form. Fourier-transforming (13) in x and y, we
obtain
d2uq

dz2
¼ jqj2uq; uqð0Þ ¼ uq; uq ¼

Z
R2

eiq�ruðrÞd2r; ð17Þ
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whose bounded solution is uq(z) = uq e�|q|z. From this, we easily see that vq ¼ �limz!0þduq=dz is
vq ¼ jqjuq. ð18Þ
so the Fourier Transform Nq of N, and the operator N itself, obtained by inverting the transform of Nq,
are
Nq ¼
1

jqj ; Nv ¼ 1

2p

Z
R2

vðr0Þ
jr� r0j d

2r0. ð19Þ
Comparing this with (9), we see that N and the operator (�D)�1/2 defined in (12) are identical, and also
Nq ¼ 1=

ffiffiffiffiffi
kq

p
, where kq = |q|2 are the eigenvalues of �D, thus justifying the notation (for a general discussion

of pseudo-differential operators, see e.g. [36]). Of course, this result is expected, since by symmetry the poten-
tial in (19) is simply a single layer potential with density 2v. For our purposes, however, it is important to
emphasize the interpretation of N as the inverse square root of negative Laplacian, which is the basis for
the approach below.

3.2. Optimal grids

Now we describe the idea of the optimal grid method. Here, we will present its derivation from a somewhat
different point of view than in [33], emphasizing its approximation theory aspect. The starting point of this
approach is to introduce a rational approximation to the impedance function F ðkÞ ¼ 1=

ffiffiffi
k
p

on a spectral inter-
val k 2 [kmin, kmax], which can then be used to approximate the Neumann-to-Dirichlet operator in Fourier
space. Various alternatives are possible here [32,34]; we, however, will follow [33] to find the optimal rational
approximation to the impedance function in the sense of uniform relative error. In other words, we will say
that R(k) is an optimal rational approximation to F(k), if
max
k2½kmin ;kmax�

j
ffiffiffi
k
p

RðkÞ � 1j ¼ min
Rn�1;n

max
k2½kmin;kmax �

j
ffiffiffi
k
p

Rn�1;nðkÞ � 1j; ð20Þ
where Rn� 1, n(k) are all rational functions of degree n � 1 by n. The quality of this approximation depends
only on the quantity j = kmax/kmin, since the spectral interval on which (20) holds can be adjusted by a simple
rescaling of k.

Existence and uniqueness of the optimal rational approximant for the inverse square root follows from
standard theory [37,38], and the explicit solution of this problem goes back to Zolotarev (see [33] and refer-
ences therein). Furthermore, as was shown in [33], the error of the optimal rational approximation decays
exponentially fast with the degree n of the rational function R(k), leading to exponential superconvergence.
So in reality quite small values of n will be sufficient for adequate accuracy over large spectral intervals.
For example, the (nearly) optimal rational approximant with n = 4 on the interval of k 2 [1, 104] is
RðkÞ ¼ 32

7 kþ 197
9

� �þ 146

7 kþ 3655
8

� �þ 2929

16 kþ 118697
8

� �þ 16

13 kþ 2
3

� � ; ð21Þ
where we rewrote R(k) as a sum of poles and rationalized the obtained coefficients. Let us point out that
numerically the optimal rational approximant can be obtained by e.g. Remez algorithm [38], without resorting
to the explicit Zolotarev solution. The results presented in this paper are obtained in this manner, using Math-
ematica software.

The relative error of approximating F(k) by R(k) in (21) is shown in Fig. 1. One can see that with only n = 4
this error does not exceed 5.5 · 10�3 on the entire spectral interval. In fact, one can push this even further and
obtain an approximant within 5% error for j = 5 · 106, still with only n = 4. On the other hand, choosing
n = 6 allows one to construct an approximant that is still 5% accurate for j = 1010, while for k 2 [1, 104]
the optimal approximant is accurate to already 2 · 10�4 with this value of n. Thus, the Zolotarev approxi-
mants are very good for representing the impedance function F(k) with reasonable accuracy over spectral
intervals that span many orders of magnitude of k, with minimal computational complexity. Let us also men-
tion that constructing the optimal approximant to F(k) using Remez algorithm is not a compute-intensive job
and takes only a few seconds on an average computer.
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Fig. 1. The relative error of the optimal rational approximation of 1=
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on the interval [1, 104] with n = 4, obtained via Remez algorithm.
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The Zolotarev solution implies that one can write
Table
The va

i

hi
RðkÞ ¼
Xn

i¼1

ci

kþ ki
; ð22Þ
where both ki > 0 and ci > 0 (cf. (21)) [33]. Therefore, up to a transformation R(k) is a Stiltjes function and can
be written as a continued fraction (again, up to an equivalence transformation):
RðkÞ ¼ 1

kh0 þ 1
h1=2þ 1

kh1þ...þ 1
hn�1=2

; ð23Þ
where h0, h1/2, h1, . . . , hn�1/2 are all positive [39]. The values of hi are then obtained from R(k) by a polynomial
division algorithm [33]. For example, the values of hi corresponding to the optimal approximant in (21) are
given in Table 1. We note that the accuracy of approximation is not very sensitive to either ki, ci in (22), or
the hi in (23). For example, the coefficients in (21) were determined only up to 10�2. On the other hand, obtain-
ing hi from ki and ci requires high precision arithmetic and is done better using exact rational arithmetic with
rationalized coefficients, as in (21).

What makes this approach work is a remarkable observation by Druskin that (23) is in fact the impedance
function for the staggered three-point discretization of (17) with k = |q|2 [32]:
1

hi

uiþ1 � ui

hiþ1=2

� ui � ui�1

hi�1=2

� �
� kui ¼ 0; i ¼ 0; 1; . . . n� 1; un ¼ 0. ð24Þ
1
lues of hi from (23) corresponding to R(k) in (21)

0 1/2 1 3/2 2 5/2 3 7/2

0.00476822 0.0161362 0.0346346 0.070919 0.147286 0.311252 0.680504 1.71468
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More precisely, if we set (u0 � u�1)/h�1/2 = �1, then it is not difficult to show that u0 = R(k), where R(k)
is given by (23). This suggests to use the following semi-discrete scheme for approximating the Neumann-
to-Dirichlet operator N in (16)
u ¼ u0; v�1=2 ¼ �v; un ¼ 0; ð25Þ
uiþ1 � ui ¼ hiþ1=2viþ1=2; ð26Þ
viþ1=2 � vi�1=2 þ hiDui ¼ 0; ð27Þ
where i = 0,1, . . . , n � 1, with ui = ui(x, y) and vi + 1/2 = vi + 1/2(x, y) and with the steps hi obtained from the
optimal approximant R(k). In essence, this is a way to approximate the negative square root of the Laplacian,
N ¼ ð�DÞ�1=2, in the operator sense. Note that the variables ui, vi� 1/2 with i P 1 are purely auxiliary and are
not intended to represent the solution of (13) for z > 0. Nevertheless, the steps hi are finely tuned (via the opti-
mal rational approximation procedure) to reproduce the solution of (13) accurately only at z = 0 by u0.

To implement the above scheme in practice, we further discretize the in-plane Laplacian, D, using any con-
venient second-order conservative scheme in the plane and solve the obtained fully discrete problem on a
Cartesian product of the two grids. To make the short length scale resolution of both grids consistent, we
require that h0 = O(h^), where h^ is the characteristic size of the grid in the plane. One can easily achieve this
by rescaling the step sizes obtained from the rational approximant R(k). The choice of R(k), in turn, is fixed by
requiring that j ¼ OððL2

x=h2
?ÞÞ, where Lx is the size of the problem in the film plane, and choosing n to achieve

the Oðh2
?Þ accuracy in (20). Note that, alternatively, for a fixed ratio j a good indicator of the maximum size of

the problem for which the Neumann-to-Dirichlet operator is resolved is the total ‘‘length’’
Lz ¼
Xn�1

i¼0

hiþ1=2 ð28Þ
of the optimal grid.
Quite remarkably, this approach achieves several desirable goals at the same time. First, because of the use

of the Zolotarev solution to approximate (�D)�1/2, the Neumann-to-Dirichlet operator is approximated uni-

formly in the entire range of wave vectors of the discrete problem. Second, the obtained finite difference
scheme is conservative and therefore enjoys all the nice properties of the usual finite difference discretizations
of (13), but with vastly fewer nodes in the z-direction. Third, one can use a small stencil in discretizing the
Laplacian and therefore find the solution quickly using conjugate gradient (CG) method. This makes the opti-
mal grid method very efficient, as we will show below. But also it is very easy to implement, as the only change
from a usual finite difference treatment of the boundary value problem (13) is the special choice of the grid
steps in the z-direction. In addition, the possibility to use CG for finding u makes the algorithm very straight-
forward to parallelize.

3.3. Optimal geometric grids

Before concluding this section, let us mention that a closed form solution for the step sizes hi in (23) that
become asymptotically equal to Zolotarev steps for large n exists. These are given explicitly by [33]:
h0 ¼
h?

1þ ep=ð2
ffiffi
n
p
Þ ; h1=2 ¼ Oðh?Þ;

hiþ1=2 ¼ hi�1=2ep=
ffiffi
n
p
; hi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hiþ1=2hi�1=2

p
.

ð29Þ
They correspond to the optimal geometric grids and also give exponential superconvergence in n. However, let
us point out that Zolotarev grids require roughly twice fewer nodes to achieve the same accuracy on the same
spectral interval. Also, the advantage of Zolotarev grids is that they can achieve a reasonable accuracy of
approximating the square root on very large spectral intervals without using too many nodes. On the other
hand, optimal geometric grids generally over-resolve the small k end of the spectral interval when the value
of n is increased. Nevertheless, the existence of a simple formula for the steps hi and reasonably good accuracy
for all n make optimal geometric grids a good choice for testing optimal grid codes, or for performing non-
demanding computations (for example, in one-dimensional problems).
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4. Simulation results

4.1. One-dimensional simulations of Neél walls using optimal geometric grids

We begin by studying the one-dimensional domain wall structures, which are stationary solutions of (11) and
(12). Assuming that the domain wall is oriented parallel to the easy axis, we obtain that u = u(x) (for simplicity
of notation, we suppress the time dependence of the variables), and so the stray field (x) is given by
¼ � ou
ox
¼ 1

2
� o2

ox2

� �1=2

sin h. ð30Þ
Substituting this expression into (11), we find the following evolution equation for the angle variable:
oh
ot
¼ o2h

ox2
� 1

2
sin 2h� m

2
cos h � o2

ox2

� �1=2

sin h. ð31Þ
Thus, the evolution of h is a gradient descent down the non-local energy functional E[h] in L2ðRÞ, where
E½h� ¼
Z

R

1

2

oh
ox

� �2

þ 1

2
sin2 hþ m

4
sin h � o2

ox2

� �1=2

sin h

( )
dx. ð32Þ
Because of the particular geometry chosen, the operator in the last term of (31) is the Dirichlet-to-Neumann
map, which can, in turn, be expressed in terms of the bounded solution of the boundary value problem for
u = u(x, z) in the upper half-plane:
o
2u

ox2
þ o

2u
oz2
¼ 0; uðx; 0Þ ¼ sin hðxÞ; ð33Þ

� o2

ox2

� �1=2

sin hðxÞ ¼ �ouðx; zÞ
oz

����
z¼0þ

. ð34Þ
We first write down a semi-discrete version of the problem, slightly modifying the approach of Section 3.2 (see
also [33]):
u0ðxÞ ¼ sin hðxÞ; unðxÞ ¼ 0; ð35Þ

hi
d2ui

dx2
þ uiþ1 � ui

hiþ1=2

� ui � ui�1

hi�1=2

¼ 0; i ¼ 1; 2; . . . ; n� 1; ð36Þ

� o
2

ox2

� �1=2

sin hðxÞ 
 � d2u0

dx2
� u1 � u0

h1=2

; ð37Þ
using geometric optimal grid from (29). We then further discretize the obtained problem in x, using a non-
uniform grid xj = b sinh[h^(j � m/2)/b], with j = 0,1, . . . , m. This particular discretization is chosen in order
to resolve the core of the Neél wall without using fine discretization in the wall tails. To approximate the
second derivative at x = xj, we use a staggered grid with arithmetic averaging:
d2ui

dx2

 1

xjþ1=2 � xj�1=2

ui;jþ1 � ui;j

xjþ1 � xj
� ui;j � ui;j�1

xj � xj�1

� �
; ð38Þ
where ui, j 
 ui(xj) and xj + 1/2 = (xj + 1 + xj)/2. Reflecting boundary conditions are imposed at the boundaries
of the computational domain in x.

This discrete problem is then treated as follows. First, for a given set of hj 
 h(xj) we compute the solution ui,j

of the discrete boundary value problem using CG with diagonal preconditioner. We then use (37) to compute
the approximate Dirichlet-to-Neumann map. After that, we evolve the solution in time using a simple explicit
time-stepping scheme (for simplicity of presentation, we do not consider more sophisticated time-stepping tech-
niques here). The solution in the form of the Neél wall is then obtained, starting from a hyperbolic tanh-like
profile, as the attained steady-state. An example of the Neél wall solution for m = 1 obtained in this manner



Fig. 2. The profile of the Neél wall at m = 1 obtained using optimal geometric grid. Results of the numerical solution of (31) with
h^ = 0.25, h1/2 = 0.125, n = 8, m = 128, b = 3.5. (a) The angle variable h (with arrows corresponding to the vector of magnetization away
from the wall). (b) The stray field .
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is shown in Fig. 2. Here, we used n = 8 and h1/2 = h^/2 for the optimal geometric grid to ensure that all the
scales of the discrete problem, down to the shortest scale, are resolved. Let us note that because of the small
number of grid points in the direction of the optimal grid the CG iterations are rapidly converging, and the
number of iterations needed for convergence decreases with time, as the solution evolves towards steady-state.

Let us now compare the results obtained by this method with the ones obtained using FFT to compute the
non-local contributions. We implemented two FFT-based methods: one uses a combination of finite differ-
ences with discrete cosine transform to compute the square root of the discrete version of the negative Lapla-
cian (second derivative), and the other is a pseudospectral method. Both are using uniform grids on a
sufficiently large finite computational domain.

The results of the comparison of these two methods with those obtained using optimal geometric grids with
non-uniform grid in x are presented in Fig. 3. This figure shows the absolute error in the energy of the domain
wall for different values of the spatial discretization step size and for different methods as a function of the
length of the computational domain (for the purposes of this comparison, the ‘‘exact’’ value of the wall energy
was computed using pseudospectral method with small discretization step and on a sufficiently large domain).
We find that the optimal geometric grid method requires an order of magnitude less discretization points than
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Fig. 3. The absolute error in the energy of the Neél wall with m = 1 obtained by different methods. The diamonds correspond to the results
of the cosine transform-based simulations (the uniform grid size is given by h^). The results of the pseudo spectral method are shown by
crosses. The results obtained with the optimal grid method are shown by squares. The optimal geometric grid simulations use n = 6 (left
square) and n = 12 (right square) for each value of h^.
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the cosine transform method to achieve the same accuracy in the computational domain of the same size. Also,
increasing n and m by a factor of 2 (this is the difference between the two squares corresponding to the same
value of h^ in Fig. 3) puts the method well beyond the resolution limit by the FFT-based methods, as the num-
ber of grid points in x for those methods becomes prohibitively large. In fact, choosing the size of the optimal
grid (in the z-direction) and that of the non-uniform grid (in the x-direction) to be comparable, we immediately
achieve the maximum resolution of the method with a given value of h^. This, of course, is very natural and is an
attractive feature of the optimal grid methods. Finally, let us note that these results are stable with respect to the
choice of h1/2. For example, they remain practically unchanged, if instead one uses n = 6 and h1/2 = h^.

4.2. One-dimensional simulations of Neél walls using Zolotarev optimal grids

We now turn to the applications of the optimal grids obtained from the Zolotarev optimal rational approx-
imations of the square root discussed in Section 3.2. Here, we are going to introduce an even more natural
discretization scheme that takes into account the physical origin of the non-locality in the magnetostatic
energy. This scheme is illustrated in Fig. 4. We represent the film with a series of nodes xj + 1/2, this is where
the magnetization (squares) is defined. To compute the stray field, we need first to evaluate the ‘‘charges’’
(full circles), this is done using centered differences, and the charges are then defined at the midpoints xj =
(xj + 1/2 + xj� 1/2)/2. The optimal grid, as in Section 3.2, is chosen to be aligned with the charges, as the latter
serve as the sources in the discrete elliptic problem:
hi

xjþ1=2 � xj�1=2

ui;jþ1 � ui;j

xjþ1 � xj
� ui;j � ui;j�1

xj � xj�1

� �
þ uiþ1;j � ui;j

hiþ1=2

� ui;j � ui�1;j

hi�1=2

¼ 1

2

sin hjþ1=2 � sin hj�1=2

xjþ1=2 � xj�1=2

� �
di;0; i ¼ 0; 1; . . . ; n� 1; ð39Þ
where di,j is the Kronecker delta, and we assumed that u�1,j = u0,j and un,j = 0. Note the factor of 1
2

in the right-
hand side of (39), as only half of the total charges contribute to the stray field in the upper half plane (see
 zero level
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Fig. 4. The schematics of the modified optimal grid-based discretization used in Section 4.2. Here, m = 3, n = 2.
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Fig. 4). Dirichlet boundary conditions are imposed on the boundaries of the computational domain: ui,0 =
ui,m = 0.

Once the solution of the discrete problem is obtained, the values of the magnetostatic potential are available
at the nodes xj. We can then, once again, use centered difference to find the magnetic field (the derivative of the
potential) at nodes xj + 1/2:
Table

Metho

Geome
Optim
Cosine
Pseudo
‘‘Exact

Table

Metho

Geome
Optim
Cosine
Pseudo
‘‘Exact
jþ1=2 ¼ �
u0;jþ1 � u0;j

xjþ1 � xj
. ð40Þ
This field is used to perform a time step to update the value of the magnetization, see (31).
We implemented this scheme to solve (31) using the optimal grid with n = 6 and j = 4 · 104, scaled to have

h0 = h^. As in the previous section, we used xj + 1/2 = b sinh[h^(j � m/2)/b]. Note that with this choice of the
optimal grid parameters the accuracy of the approximation of the square root coincides with that of the opti-
mal geometric grid, on essentially the same spectral interval. Not surprisingly, the results of the simulations
agreed with those of Section 4.1, with the same convergence properties as in Fig. 3. In fact, the same accuracy
could be achieved, for example, with h^ = 0.25, using only n = 4 and j = 104 (essentially, the scaled version of
the grid shown in Table 1).

To further investigate the performance of these methods, we ran well-resolved simulations of (31) and com-
pared the run times. In all the runs we chose h^ = 0.05 and large enough domain to obtain the energy and
other parameters of the Neél wall to within at least three significant digits. The optimal geometric and Zolota-
rev grids were constructed as explained above, except the Zolotarev grid was based on the optimal rational
approximation of the square root on the interval with j = 106. Both the optimal geometric and the Zolotarev
grid-based codes used non-uniform grids in x as explained above with b = 0.9, and the same convergence cri-
terion was used for the CG iterations. The size of the obtained optimal grids is given by Lz, and the domain
size is given by Lx (see Tables 2 and 3).

We compared these results to the ones obtained by the FFT-based (cosine transform and pseudospectral)
methods. Both the cosine transform and the pseudospectral codes used the same explicit time-stepper as for
the optimal grid simulations (with the same time step Dt = 0.001). These results are also compared with the
‘‘exact’’ results obtained using the same pseudospectral algorithm which uses fourth-order Runge–Kutta
method in time with an integrating factor for diffusion to improve stability of the algorithm (here we used
h^ = 0.25 and Dt = 0.025) and a sufficiently large domain to obtain the solution up to at least 6 significant
digits. Of course, as far as high accuracy is concerned, pseudospectral method is superior in this particular
problem, since it requires fewer discretization points due to exponentially small truncation error. Nevertheless,
for a fair comparison of the methods, we did pseudospectral runs with the same number of nodes as in the
cosine transform method.

The results of these runs, starting with the initial data h(x) = p/(1 + ex/2), can be summarized in Tables 2
and 3. Table 2 shows the run times, the values of the wall energy, and the maximum value of the stray field,
3

d T (s) n m Lx Lz E (0)

tric grid 29.6 10 256 1102.95 303.29 2.213443 0.381807
al grid 11.6 6 257 1102.95 258.25 2.214215 0.381801
transform 302 1 16,384 819.20 0 2.213056 0.381766
spectral 510 1 16,384 819.20 0 2.213160 0.381816
’’ 78.8 1 16,384 4096 0 2.213164 0.381820

2

d T (s) n m Lx Lz E (0)

tric grid 19.2 10 256 1102.95 303.29 2.219161 0.360774
al grid 5.0 6 257 1102.95 258.25 2.219856 0.359566
transform 30.1 1 16,384 819.20 0 2.218795 0.360798
spectral 54.0 1 16,384 819.20 0 2.218908 0.360812
’’ 7.3 1 16,384 4096 0 2.218915 0.360823
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obtained from these simulations at t = 2.5. The runs were performed on a 1.33 GHz Macintosh PowerBook
G4 computer. The first thing to observe is an almost 4-fold speedup when using the Zolotarev optimal grid, as
compared to the optimal geometric grid. The speedup is partly due to fewer number of nodes in the z-direc-
tion, and also due to fewer number of iterations of the CG method needed to achieve the same accuracy when
solving the discrete boundary value problem for u. Secondly, both methods beat the cosine transform method,
which is quite impressive in view of the fact that the latter is usually the method of choice for the considered
class of problems. This is because the optimal grid methods use vastly fewer nodes, only where they are needed
to resolve the fine structure of the solution. The pseudospectral method did worse still because of the need to
perform more FFTs.

This difference becomes even more dramatic in the second series of runs summarized in Table 3. Here, the
same quantities are shown, but now at t = 25. The evolution of h for 2.5 < t < 25 is a slow relaxation towards
the domain wall solution. Now the optimal grid codes beat the cosine transform code by a factor of over 10,
and the Zolotarev grid code beats it by a factor of 30. This is due to the fact that when the evolution becomes
slow, it only takes a few (often just one) CG iterations during each time step for it to converge. This is an extra
advantage of an iterative optimal grid-based method for evolution equations involving non-local operators, as
it uses less time during slow phase of the dynamics.

To demonstrate the true multiscale nature of the method, we computed the solution in the form of the Neél
wall in a soft material like permalloy. We chose m = 250, which for the parameters of permalloy discussed in
Section 2 corresponds to a 20 nm-thick film. Here, we set h^ = 0.02, b = 0.4 and used m = 513 nodes to
achieve a grid whose extent in x is Lx . 1.5 · 105. To generate a comparable grid in z, we constructed an opti-
mal approximation to the square root with n = 8 on a spectral interval with j = 1012. Choosing h0 = h^, we
find that the ‘‘length’’ of the optimal grid in the z-direction is Lz = 5.5 · 104, and the relative error of this opti-
mal approximant is within about 2%. The obtained solution in the form of the Neél wall is presented in Fig. 5.
The two characteristic features of the Neél walls: the logarithmic tail followed by the algebraic decay [21], can
all be clearly seen from these data, replotted in logarithmic scale in Fig. 6.

4.3. Two-dimensional simulations

In this section, we extend the approach of Section 4.2 to two-dimensional films. Here, we consider a finite
rectangular sample in free space, and, hence, need also to take into account boundary effects. This, however, is
easily done by combining the optimal grids in both x, y- and z-directions [34]. This is illustrated in Fig. 7. Sim-
ilarly to the one-dimensional case, the material is broken up into square cells, and the magnetization is rep-
resented by the grid points in the centers of these cells (squares). The potential nodes (circles) are placed at the
vertices of the material cells. The xy-grid is then extended into free space by using the steps of the optimal grid
in one (either x or y) or both directions in the xy-plane. The full three-dimensional grid is then taken to be a
Cartesian product of the xy-plane grid just described and the optimal grid in z [34].
Fig. 5. The profile of the Neél wall at m = 250 obtained using Zolotarev optimal grid. Results of the numerical solution of (31) with
h^ = 0.02, h0 = h^, j = 1012, n = 8, m = 513, b = 0.4. (a) The angle variable h. (b) The stray field .
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The solution is then computed as follows. First, the magnetic charges at the potential nodes are computed
by approximating �$ Æ m obtained from h, using a pair of centered differences along the diagonals of the cells
(two thin lines in Fig. 7 for a representative node). To account for the boundary of the material, we assume
that m = 0 in the fictitious cells immediately outside the film, this generates surface charges at the film bound-
ary. Once the charges are obtained, the problem for the potential u is solved using CG as before, and then the
gradient of the potential is computed, again, using centered differences in the directions of the diagonals of the
square. The field, in turn, is used to do a time step to evolve h.

We performed a series of fully resolved simulations and recovered a number of well-known domain struc-
tures [1], which further corroborates the validity of our method. First, we considered a sample that is elon-
gated in the direction of the easy axis, and set m = 10 to make the effect of the stray field more significant
(this would correspond, e.g., to an ultra-thin 2 nm-thick permalloy film for the parameters of [29]). We discret-
ized the film on a 33 · 65 uniform grid and used a Zolotarev optimal grid with n = 6 nodes and h0 = h^ = 0.25,
optimized for j = 2.5 · 105 (this gives the relative error on the spectral interval within 0.2%, with Lz . 770).
From the initial condition with all the magnetization vectors at a 45� angle to the easy access, the attained
steady-state is shown as a vector field in Fig. 8. This configuration is the well-known S-state. Because of
the rather large value of m, magnetostatic energy gets strongly penalized, and so the vector of magnetization
Fig. 8. The S-state obtained in the simulation with m = 10, mx = 33, my = 65, n = 6, j = 2.5 · 105, h0 = h^ = 0.25.



Fig. 9. The Neél wall in a finite rectangular sample. Results of the simulations with m = 1, mx = 65, my = 33, n = 6, j = 2.5 · 105,
h0 = h^ = 0.25.

Fig. 10. The C-state obtained in the simulation with m = 10, mx = 65, my = 33, n = 6, j = 2.5 · 105, h0 = h^ = 0.25.
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tries to align normally to the film top and bottom edges. This results in the formation of excess charges in the
top-left and bottom-right corners of the film.

We next examine the effect of the boundaries in finite rectangular films on the one-dimensional Neél walls.
Here, we consider the samples that are elongated in the direction perpendicular to the easy axis. We first
choose m = 1 and other parameters as above, except the film is 65 · 33 cells. The apparent steady-state
obtained from the initial data in the form of a one-dimensional Neél wall-like profile is shown in Fig. 9.
One can see that the domain wall is not significantly affected by the boundaries for this value of m.

On the other hand, one can see a change in behavior at larger values of m. We repeated the preceding sim-
ulation at m = 10, the obtained steady-state is shown in Fig. 10. In this case the charges on the top and bottom
edges of the sample are strongly penalized, and so the magnetization vector tends to align parallel to the
boundaries, creating a pair of opposite charges at the bottom right and left corners, and the remnants of
the Neél wall structure in the mid-bottom part of the sample. This is essentially a C-state.

We would like to point out that these runs are very fast and take on the order of only a minute to execute on
the same computer as before. In fact, simulations of films discretized to 500 · 500 nodes can be routinely han-
dled by this method.

5. Conclusion

To summarize, we have presented a new method for computing the stray field in the thin film micromag-
netics simulations based on the LLG equation. The method takes advantage of the recently proposed idea of
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optimal grids for approximating the Neumann-to-Dirichlet map associated with the Laplace’s equation in free
space, and relies on the optimal rational approximation of the square root of the in-plane Laplacian in oper-
ator sense.

We have demonstrated the efficiency and ease of use of this method as compared to the more conventional
FFT-based approaches in the case of a reduced model of ultra-thin film micromagnetics. The chief advantage of
our approach is the fact that it uses a conservative finite difference discretization of the free space problem,
which admits the use of non-uniform grids in the film plane, while requiring vastly fewer discretization nodes
in the direction normal to the film surface. This opens up a possibility to combine the optimal grid discretization
in the normal direction with an adaptive in-plane discretization, which is needed to resolve fine magnetic struc-
tures forming in these materials, for a truly multiscale approach to thin film micromagnetic simulations.

We also demonstrated that a combination of optimal grids in all directions can be used to efficiently treat the
boundary charges forming on the film edges in a finite sample, with essentially no extra cost for solving the exte-
rior problem. Similarly, our approach is not limited to only infinitesimally thin magnetic films and can be used to
study films of finite thickness by simply adding more material layers in the normal direction and gluing together a
uniform grid, say, for the bulk of the material with an optimal grid in the free space. Naturally, the method is also
not limited to film geometries and can be extended in a variety of ways. This, together with a straightforward par-
allelization, may provide a very powerful computational tool for studying three-dimensional magnetic structures
in micromagnetics and can become useful for the development of new magnetic devices.
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